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Abstract. We revisit the construction of topological Yang–Mills theories of the Witten type with arbitrary
space-time dimension and number of “shift supersymmetry” generators, using a superspace formalism.
The super-BF structure of these theories is exploited in order to determine their actions uniquely, up to
the ambiguities due to the fixing of the Yang–Mills and BF gauge invariance. UV finiteness to all orders
of perturbation theory is proved in a gauge of the Landau type.

1 Introduction

Observables in topological theories possess a global char-
acter, such as the knot invariants of Chern–Simons theory,
Wilson loops, etc. The problem of finding all these invari-
ants is a problem of equivariant cohomology, as proposed
by Witten in 1988 [1] for Yang–Mills topological theory
in four-dimensional space-time. Equivariant cohomology
is the cohomology of a BRST-like operator – the “shift su-
persymmetry operator”, associated to a local shift trans-
formation of the connection field – in a space of gauge
invariant field polynomials. A superspace formulation of
Witten’s model was proposed by Horne [2] and developed
later on, in particular by Blau and Thompson [3, 4], who
extended it to the cases of more than one supersymme-
try generator and in different space-time dimensions. In
various cases these topological theories are seen to arise
from super-Yang–Mills theories through some twist of the
group representations [1,3,4], possibly accompanied by di-
mensional reduction. The reader may refer to [5] for the
systematic construction of topological theories from super-
Yang–Mills ones using this technique. Our proposal is to
systematize the superspace construction of actions in the
most general setting involving an arbitrary number NT of
topological supersymmetry generators in any space-time
dimension D. Our construction will be direct, not passing
through the twist procedure. The question of the existence,
in each case, of a corresponding super-Yang–Mills theory
will not be touched.

The theory intends to describe gauge field configura-
tions with null curvature, or also selfdual curvature, in the
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four-dimensional case. The null or selfdual curvature con-
dition is implemented through a Lagrange multiplier field
B which has the same hierarchy of zero modes as the B
field of a BF type theory [6]. The point of view usually
adopted in the literature [1–4] is that of considering the
supersymmetry generator(s) as BRST operator(s) associ-
ated to the local shift invariance, and fixing the latter with
suitable Lagrange multiplier fields. In the present paper, in
order to avoid certain ambiguities which may arise in the
usual scheme, we shall consider the theory as a rigid super-
symmetric theory with two gauge invariances, namely the
usual Yang–Mills gauge invariance and the gauge invari-
ance of theB field, like the one encountered inBF theories.
Both invariances are supergauge invariances, their param-
eters being superspace functions. We shall see that this is
enough to define the theory in an unambiguous way, apart
from the freedom in the choice of a gauge fixing proce-
dure. Moreover, in the case of a gauge fixing of the Landau
type, we shall show, using supergraph techniques, that per-
turbative radiative corrections are completely absent. The
theory thus turns out to be obviously ultraviolet finite.

A very important point is the systematic characteri-
zation of all observables of a topological theory. This has
been fully done in [7] for the NT = 1 theories. Partial
results exist in the literature. In particular, a set of ob-
servables has been given in [8] for the case of NT = 2
in a four-dimensional Kähler manifold. In the present pa-
per we shall show a rather general set of observables, for
any value of NT and any space-time dimension, however
without determining if it represents the most general set.

The plan of this paper is the following. After recalling
the principal features of the original Witten–Donaldson’s
topological Yang–Mills theory [1] in Sect. 2 and of the su-
perspace formalism for topological theories in Sect. 3, we
shall show the construction of the action as a super-BF
one, with the appropriate gauge fixing, in Sect. 4. Exam-
ples of observables are given in Sect. 5, and the ultraviolet
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problem is dealt with in Sect. 6. A discussion of the results
is done in the concluding section. Some of our conventions
and notation is given in two appendices.

2 Shift supersymmetry

We are going to review here, for illustrative purposes, how
“shift supersymmetry” may describe the gauge fixing of
gauge field configurations with null curvature, or alterna-
tively with selfdual curvature. We shall concentrate on the
original Donaldson–Witten model [1, 9], with one super-
symmetry generator in four-dimensional space-time.

2.1 Transformation rules and invariant actions

We recall that this model implies, beyond the gauge con-
nection aµ associated to some gauge group G, a fermion
1-form ψµ and a 0-form φ, with “shift” supersymmetry
defined by the infinitesimal transformations

Q̃a = ψ ,

Q̃ψ = −D(a)φ ≡ − (dφ+ [a, φ]) ,

Q̃φ = 0 . (1)

All fields here and in the rest of the paper are valued in
the Lie algebra of the gauge group, which is assumed to
be a compact Lie group. Details on the notation are given
in Appendix A.

The usual Yang–Mills gauge transformations read, writ-
ten as BRST transformations with ghost c,

Sa = −D(a)c, Sψ = −[c, ψ],

Sφ = −[c, φ], Sc = −c2 . (2)

Whereas the BRST operator S is nilpotent, the fermionic
generator Q̃ is nilpotentmodulo aφ-dependent gauge trans-
formation:

Q̃2a = −D(a)φ , Q̃2ψ = −[ψ, φ] , Q̃2φ = 0 .

(3)

This means that Q̃ is nilpotent when restricted to gauge
invariant quantities. Following Witten, we may thus inter-
pret the shift supersymmetry invariance as a BRST-like
invariance in the space of gauge invariant field functionals.
The 1-form ψ represents the ghost of local shift invariance
and φ is its ghost of ghost. Then the following counting
of degrees of freedom holds: counting 4 degrees of freedom
for a, −4 for the ghost ψ and 1 for the ghost of ghost φ,
we arrive at a total of 1 degree of freedom, which corre-
sponds to the scalar mode of the field a – which in turn
is eliminated thanks to the usual Yang–Mills gauge invari-
ance. The final number of local degrees of freedom of 0 is
of course characteristic of a topological theory.

In view of the absence of local degrees of freedom, the
theory may be defined through an action which will be

purely of a gauge fixing type. This fixing of the local shift
supersymmetry may be done introducing Lagrange mul-
tipliers fields 0b2, 1λ1, 0λ0 and −1η0, together with
the corresponding “antighost” fields −1b̄2, 0ψ̄1, −1ψ̄0
and −2φ̄0, where the lower right index denotes the form
degree and the upper left one the degree of supersymmetry
or “SUSY number”. The latter number corresponds to a
ghost number in the interpretation of shift supersymmetry
as a BRST transformation. Each “antighost” transforms
under Q̃ into its corresponding Lagrange multiplier:

Q̃ −1b̄2 = 0b2, Q̃ p−1ψ̄p = pλp (p = 1, 2),

Q̃ −2φ̄0 = −1η0, Q̃ 0b2 = −[ −1b̄2, φ], (4)

Q̃ pλp = −[ p−1ψ̄p, φ], Q̃ −1η0 = −[ −2φ̄0, φ] ,

the transformation rules of the Lagrange multipliers assur-
ing the nilpotency of Q̃modulo a φ-dependent gauge trans-
formation. If one intends to study the instanton gauge field
configurations, i.e. those with selfdual curvature F = P+F ,
where P+ is defined by (77), the associated “antighost”
and Lagrange mutiplier have to be chosen as anti-selfdual:
P+

−1ψ̄0 = 0, P+
0λ0 = 0.

A gauge invariant and Q̃- invariant action may be taken
as follows [4]:

Q̃ Tr
∫

( −1b̄2 F (a) + −2φ̄0 D(a) ∗ ψ

+ 0ψ̄1 D(a) ∗−1 b̄2 + −1ψ̄0 D(a) ∗0 ψ̄1)

= Tr
∫

( 0b2F (a) + −1η0 D(a) ∗ ψ

+ 1λ1 D(a) ∗−1 b̄2 + 0λ0 D(a) ∗0 ψ̄1

+ −1b̄2 D(a)ψ + −2φ̄0 D(a) ∗D(a)φ

+ 0ψ̄1 D(a) ∗0 b2 + −1ψ̄0 D(a) ∗1λ1

+ −2φ̄0[ψ, ∗ψ] − 0ψ̄1[ψ, ∗−1b̄2]

− −1ψ̄0[ψ, ∗0ψ̄1]), (5)

where F (a) = da + a2 is the curvature of the Yang–Mills
connection a and ∗ is the Hodge duality operator (see
Appendix A). One sees that the Lagrange multiplier 0b2
implements the zero-curvature condition F (a) = 0, or the
selfduality condition, as in the original Witten’s paper.
−1η0 is the Lagrange multiplier fixing the zero mode of ψ.
Moreover, 1λ1 fixes the zero mode of −1b̄2 and 0λ0 that
of 0ψ̄1. Finally, 0ψ̄1 fixes the zero mode of 0b2 and −1ψ̄0
that of 1λ1.

This action corresponds to a generalized “Landau
gauge” fixing. However, it is still possible to add one in-
variant term quadratic in the Lagrange multipliers without
spoiling gauge invariance, supersymmetry and SUSY num-
ber conservation. It reads

Q̃ Tr
∫
ξ

2
−2ψ̄2 ∗ 0b2

= Tr
∫
ξ

2
( 0b2 ∗ 0b2 + −2ψ̄2 ∗ [ −2ψ̄2, φ]). (6)
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In this case, which corresponds to a generalized Feynman
gauge, the Lagrange multiplier 0b2 becomes an auxiliary
field, whose elimination through its equation of motion
gives rise, for ξ = 1, to the original action of Witten [1],
which describes selfdual configurations when choosing the
Lagrange multiplier 0b2 and its corresponding “antighost”
as anti-selfdual 2-forms.

2.2 Observables

According to Witten, the algebra of observables of the
theory is generated by sets of gauge invariant forms w(n)

p

(0 ≤ p ≤ 4, n integer) obeying “descent equations”:

Q̃w(n)
p + dw

(n)
p−1 = 0 (4 ≥ p ≥ 1) , Q̃w

(n)
0 = 0 , (7)

and are uniquely fixed up to total derivatives by

w
(n)
0 = C(n)(φ) ,

where C(n)(φ) is an invariant corresponding to a Casimir
operator C(n) of the gauge group. Each p-form wn

p , being
then integrated on some p-dimensional submanifold Mp,
represents an equivariant cohomology class and defines a
basis element of the algebra of observables.

3 NT-extended supersymmetry

Our purpose in this section is to review and develop a
superspace formalism describing topological theories such
as Witten’s theory described in Sect. 2 and generalizations
of it for more than one supersymmetric generators and
for any space-time dimension, starting from the formalism
described in [2, 4, 7].

3.1 NT superspace formalism

NT supersymmetry is generated by the fermionic charges
QI , I = 1, . . . , NT obeying the Abelian superalgebra1

[QI , QJ ] = 0 , (8)

commuting with the space-time symmetry generators and
the gauge group generators. The gauge group is some com-
pact Lie group.

A representation of supersymmetry is provided by su-
perspace, a supermanifold with D bosonic and NT fermi-
onic dimensions2. The respective coordinates are denoted
by (xµ, µ = 0, . . . , D − 1), and (θI , I = 1, . . . , NT). A
superfield is by definition a superspace function F (x, θ)
which transforms as

QIF (x, θ) = ∂IF (x, θ) ≡ ∂

∂θI
F (x, θ) (9)

1 The bracket is here an anti-commutator.
2 Notation and conventions on superspace are given in Ap-

pendix B.

under an infinitesimal supersymmetry transformation.
An expansion in the coordinates θI of a generic super-

field reads

F (x, θ) = f(x) +
N∑

n=1

1
n!
θI1 . . . θInfI1...In

(x), (10)

where the space-time fields fI1...In
(x) are completely anti-

symmetric in the indices I1 . . . In. We recall that all fields
(and superfields) are Lie algebra valued. We shall also deal
with superforms. A p-superform may be written as

Ω̂p =
p∑

k=0

Ωp−k; I1...Ik
dθI1 . . . dθIk , (11)

where the coefficients Ωk−1; I1...Ik
are (Lie algebra valued)

superfields which are space-time forms of degree (p − k).
They are completely symmetric in their indices since, the
coordinates θ being anti-commutative, the differentials dθI

are commutative. The superspace exterior derivative is de-
fined as

d̂ = d+ dθI∂I , d = dxµ∂µ (12)

and is nilpotent: d̂ 2 = 0.
The basic superfield of the theory is the superconnection

Â, a 1-superform:

Â = A+ EIdθ
I , (13)

withA=Aµ(x, θ)dxµ a 1-form superfield andEI =EI(x, θ)
a 0-form superfield. The superghost C(x, θ) is a 0-super-
form. We expand the components of the superconnec-
tion (13) as follows:

A = a(x) +
N∑

n=1

1
n!
θI1 . . . θInaI1...In

(x) , (14)

where the 1-form a is the gauge connection, and the 1-forms
aI1...In

its supersymmetric partners. The expansions of EI

and of the ghost superfield C read

EI = eI(x) +
N∑

n=1

1
n!
θI1 . . . θIneI,I1...In(x) ,

C = c(x) +
N∑

n=1

1
n!
θI1 . . . θIncI1...In(x) . (15)

The infinitesimal supergauge transformations of the super-
connection are expressed as the nilpotent BRST transfor-
mations

SÂ = −d̂C − [C, Â] , SC = −C2 , S2 = 0 . (16)

In terms of component superfields we have

SA = −dC − [C,A] ,

SEI = −∂IC − [C,EI ],

SC = −C2 . (17)
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The supercurvature

F̂ = d̂Â+ Â2 = F (A) + ΨI dθ
I + ΦIJ dθ

IdθJ (18)

transforms covariantly:

SF̂ = −[C, F̂ ] ,

as well as its components

F (A) = dA+A2,

ΨI = ∂IA+D(A)EI ,

ΦIJ =
1
2
(∂IEJ + ∂JEI + [EI , EJ ]), (19)

where the covariant derivative is defined by D(A)(·) =
d(·) + [A, (·)]

For further use and comparison with the literature, let
us give the explicit examples of NT = 1, 2.

Case NT = 1

The superconnection (13) and the expansions (14) and (15)
read

A(x, θ) = a(x) + θψ(x),

E(x, θ) = χ(x) + θφ(x),

C(x, θ) = c(x) + θc′(x) . (20)

The BRST transformations of the component fields are

Sa = −D(a)c, Sψ = −[c, ψ] −D(a)c′,

Sφ = −[c, φ] − [χ, c′], Sχ = −[c, χ] − c′,

Sc = −c2, Sc′ = −[c, c′] (21)

As for the supersymmetry transformations defined by (9),
we have

Qa = ψ, Qψ = 0,

Qχ = φ, Qφ = 0,

Qc = c′, Qc′ = 0. (22)

The supercurvature components (19) read

F (A) = F (a) − θD(a)ψ ,

Ψ = ψ +D(a)χ− θ (D(a)φ− [ψ, χ]) ,

Φ = φ+ χ2 + θ[φ, χ] . (23)

Case NT = 2

The superconnection (13) and the expansions (14) and (15)
now read (with I = 1, 2)

A(x, θ) = a(x) + θIψI(x) +
1
2
θ2α ,

EI(x, θ) = χI(x) + θIφIJ(x) +
1
2
θ2ηI ,

C(x, θ) = c(x) + θIcI(x) +
1
2
θ2cF . (24)

The BRST transformations of the component fields are

Sa = −D(a)c ,

SψI = −[c, ψI ] −D(a)cI ,

Sα = −[c, α] −D(a)cF + εIJ [cI , ψJ ] ,

SχI = −[c, χI ] − cI ,

SφIJ = −[c, φIJ ] − εIJcF + [χI , cJ ] ,

SηI = −[c, ηI ] − [cF , χI ] + εJK [cJ , φIK ] ,

Sc = −c2 ,
ScI = −[c, cI ] ,

ScF = −[c, cF ] +
1
2
εIJ [cI , cJ ] . (25)

The supersymmetry transformations read

QIa = ψI , QIψJ = −εIJα , QIα = 0 ,

QIχJ = φJI , QIφJk = −εIKηJ , QIηJ = 0 ,

QIc = cI , QIcI = −εIJcF , QIcF = 0 . (26)

The supercurvature components (19) read now

F (A) = F (a) − θID(a)ψI

+
1
2
θ2

(
D(a)α− 1

2
εIJ [ψI , ψJ ]

)
,

ΨI = ψI +D(a)χI

+ θJ(εIJα−D(a)φIJ + [ψJ , χI ])

+
1
2
θ2(D(a)ηI − εKJ [ψK , φIJ ] + [α, χI ]) ,

ΦIJ =
1
2

(φIJ + φJI + [χI , χJ ] (27)

+ θK(εIKηJ + εJKηI + [φJK , χI ] + [φIK , χJ ])

+
1
2
θ2([χI , ηJ ] + [ηI , χJ ] − εKL[φIK , φJL])

)
.

Counting the number of degrees of freedom

The numbers of degrees of freedom, i.e. the numbers of com-
ponent fields – remembering that a p-form has D!/[p!(D−
p!)] components – are shown in Table 1. If we were consid-
ering the present theory as a usual supersymmetric gauge
theory, with (super)gauge invariance defined by the BRST
transformations (17), the number of physical degrees of
freedom would be given by the total number of components
of the forms A and EI minus the number of components of
the superghost C. However, considering it as a topological
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Table 1. Numbers of component fields. D = space-time dimension, NT = number of
supersymmetry generators

Fields: aI1...In(x) A(x, θ) eI,I1...In(x) EI(x, θ) cI1...In(x) C(x, θ)
Numbers of fields: D

(
NT
n

)
D 2NT NT

(
NT
n

)
NT 2NT

(
NT
n

)
2NT

Table 2. Numbers of physical degrees of freedom. D = space-time dimension, NT =
number of supersymmetry generators

Fields: aI1...In A eI,I1...In EI cI1...In C

SUSY #: n 0 n+ 1 1 n 0
Ghost #: 0 0 0 0 1 1
Degrees of freedom: (−1)nD

(
NT
n

)
0 (−1)n+1NT

(
NT
n

)
0 (−1)n+1(NT

n

)
0

theory we have to treat supersymmetry as a local invari-
ance, too, all fields excepted the Yang–Mills connection a
being ghosts or ghosts of ghosts, as in the example shown
in Sect. 2. The SUSY number s is thus a ghost number
as well as the usual ghost number3 g. Thus the effective
ghost number is equal to s+ g and, in the counting of the
physical degrees of freedom, we must therefore assign a
sign (−)s+g to the number of degrees of freedom of a field,
as shown in Table 2. One sees that there is a complete
cancellation of the local degrees of freedom, as it should in
a topological theory.

3.2 Wess–Zumino gauge

The contact with the formalism described in Sect. 2 is made
by choosing a special gauge fixing [4] of the Wess–Zumino
type [10]. The BRST transformations of the component
fields can be calculated from the superfield expressions (17).
They are explicitly given, forNT =1and 2, by (21) and (25).
We shall only write explicitly the linear part – or Abelian
approximation – of the transformations in the general case,
which will be sufficient for our argument:

Sa = −dc+ . . . , SaI1...IN
= −dcI1...IN

+ . . . ,

SeI = −cI + . . . , SeI,I1...IN
= −cII1...IN

+ . . . ,

Sc = . . . , ScI1...IN
= . . . , (28)

where the dots represent non-linear terms. These transfor-
mations indicate that eI(x) and the completely antisym-
metric part of the fields eI,I1...In

(x) are pure gauge degrees
of freedom. A possible gauge fixing is therefore setting these
fields to zero. This defines the Wess–Zumino (WZ) gauge:

eI = 0 , e[I,I1...In] = 0 (1 ≤ n ≤ NT) . (29)

This fixes the gauge degreees of freedom corresponding to
the ghosts cI1...In (1 ≤ n ≤ NT). The remaining gauge
degree of freedom parametrized by the ghost c, which is of
the usual Yang–Mills type, can be fixed in a usual way.

3 s and g are defined by attributing s = g = 0 to the gauge
connection a(x), s = 1, g = 0 for the supersymmetry generators
QI – hence s = −1 to θI – and s = 0, g = 1 for the BRST
generator S.

The WZ gauge condition (29) is not stable under su-
persymmetry transformations, but one can redefine the
generators QI into new generators Q̃I , compatible with
the WZ condition, resulting from a combination of QI and
of a field dependent supergauge transformation. Thus, let
us combine an infinitesimal supersymmetry transformation
of constant commuting parameters εI with a supergauge
transformation δΛ of anticommuting parameters (fermionic
superfield) Λ(x, θ):

Q̃ = εIQI + δΛ ≡ εIQ̃I . (30)

δΛ is in fact a BRST transformation (21), with C substi-
tuted by Λ. This will define the modified supersymmetry
generator Q̃I , provided we choose Λ in such a way as to
preserve the WZ gauge condition (30). It is convenient to
rewrite the WZ condition in a superspace way:

θIEI(x, θ) = 0 , (31)

where EI is the dθ-part of the superconnection (13). We
shall denote by ẼI the solution of this condition, and by
ẽ[I,I1...In] (0 ≤ n ≤ NT) the components of its θ expansion,
which are therefore solutions of (29). The latter ones are
tensors with mixed symmetry. Applying Q̃ to (31) we find,
after some integrations by parts in θ:

Q̃(θIEI) = −θI
(
εJ∂JEI − ∂IC − [C,EI ]

)
= −εIEI + θI∂IΛ+ ∂J(εJθIEI)

+ [θIEI , Λ] , (32)

which shows that the WZ condition (31) is stable if, and
only if, Λ obeys the equation

θI∂IΛ = εIEI . (33)

The solution reads

Λ = εI
NT∑
n=1

1
n!n

θI1 . . . θIn ẽI,I1...In(x) , (34)

where the functions ẽI,I1...In
(x) are the coefficients of the

superfield expansion of ẼI , a solution of (31).
One can check that the superalgebra now closes up to

field dependent gauge transformations δẽIJ
:

[Q̃I , Q̃J ] = −2δẽIJ
.
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Table 3. Numbers of component fields in the WZ gauge. D = space-time dimension,
NT = number of supersymmetry generators

Fields: aI1...In(x) A(x, θ) eI,I1...In(x) EI(x, θ) c(x)
Numbers of fields: D

(
NT
n

)
D 2NT

(
NT+1
n+1

)
n (NT − 1)2NT + 1 1

Table 4. Numbers of physical degrees of freedom. D = space-time dimension, NT

= number of supersymmetry generators

Fields: aI1...In(x) A(x, θ) eI,I1...In(x) EI(x, θ) c(x)
SUSY #: n 0 n+ 1 1 0
Ghost #: 0 0 0 0 1
Degrees of freedom: (−1)nD

(
NT
n

)
0 (−1)n+1(NT+1

n+1

)
n 1 −1

Physical degrees of freedom in the WZ gauge

The numbers of component fields are now given in Table 3.
Remember that the only remaining ghost is c(x), since
the cI1...In for n ≥ 1 correspond to the gauge degrees of
freedom which have been fixed.

In order to count the physical degrees of freedom we
must again take into account the sign (−)s+g characterizing
the ghost nature of each field, thus obtaining the results
shown in Table 4.

There is again a complete cancellation of the local de-
grees of freedom, as it should.

Let us consider more explicitly the cases of NT = 0
and 1.

Case NT = 1

The WZ gauge condition reads χ = 0; we have

Ẽ(x, θ) = θφ(x) ,

and the parameterΛ of the compensating supergauge trans-
formation is given by

Λ = ε θφ .

In four dimensions we recover the Donaldson–Witten the-
ory of Sect. 2. In particular, the modified supersymmetry
transformations are those given by (1). It is moreover easy
to check the nilpotency of Q̃ modulo a φ dependent gauge
tansformation δφ:

Q̃2 = δφ .

Case NT = 2

In terms of the component fields defined by (24), the WZ
gauge condition reads

χI = 0 , φIJ − φJI = 0 ,

so that

ẼI = θJφ(IJ) +
1
2
θ2ηI with φ(IJ) =

1
2
(φIJ + φJI) .

The parameter Λ of the compensating supergauge trans-
formation is given by

Λ = εI
(
θJφ(IJ) +

1
4
θ2ηI

)
,

and the modified supersymmetry transformations are

Q̃Ia = ψI ,

Q̃IψJ = −D(a)φIJ − εIJα,

Q̃Iα = εJK [φIJ , ψK ] +D(a)ηI ,

Q̃IφJK =
1
2

(εIJηK + εIKηJ) ,

Q̃IηJ = εKL [φIK , φJL] .

The superalgebra closes on the φ dependent gauge trans-
formations δφ(IJ) :

[Q̃I , Q̃J ] = −2δφ(IJ) .

4 Actions

4.1 Action for NT = 1 in D-dimensions

4.1.1 The geometrical sector

We follow here [2–4, 11]. In such theories, the action is
purely of gauge fixing type, the gauge condition being that
of zero Yang–Mills curvature, or possibly of selfdual curva-
ture, in four dimensions, as in Witten’s original paper [1].
The “gauge invariance” which has to be fixed is the local
shift supersymmetry expressed by the nilpotent operator
Q (or Q̃ in the WZ gauge). For this we have to intro-
duce a Lagrange multiplier field4 0b0D−2 and an associated
“antighost” −1b̄0D−2. In the case of a selfduality condition
in D = 4 dimensions, both 0b0D−2 and −1b̄0D−2 are to be
taken as anti-selfdual 2-forms. One has still to introduce the

4 Recall that the indices p and s in sϕg
p respectively denote

the form degree and the SUSY number. The indice g denotes
the ghost number associated to the BRST invariance defined
by (16), or (2), in the WZ gauge.
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Lagrange multiplier −2φ̄0
0 and its associated “antighost”

−1η0
0 in order to fix the zero mode of the 1-form field 1ψ0

1 .
“Antighosts” and Lagrange multipliers transform as

Q −1b̄0D−2 = 0b0D−2 , Q 0b0D−2 = 0 ,

Q −2φ̄0
0 = −1η0

0 , Q −1η0
0 = 0 . (35)

The best way to write down an invariant action is to use
the superspace formalism, introducing the two “Lagrange
multiplier superfields”

−1B0
D−2 = −1b̄0D−2 + θ 0b0D−2 ,

−2Φ
0
0 = −2φ̄0

0 + θ −1η0
0 ,

corresponding to the transformation rules (35). One must
impose the anti-selfduality condition P+

−1 and B0
D−2 = 0

if one is interested in the instanton configurations (see (77)
for the definition of the (anti-)selfduality projectors). An
action which fixes local shift supersymmetry may be given
by the following supergauge invariant and supersymmetric
expression, written as a superspace integral:

Sinv = Tr
∫
d1θ

(
−1B0

D−2 F (A) + −2Φ
0
0 D(A) ∗ Ψ

)

= Tr
∫ ( 0b0D−2 F (a) + −1η0

0 D(a) ∗ (ψ +D(a)χ)

+ (−1)D−1 −1b̄0D−2 D(a)ψ

+ −2φ̄0
0 (− D(a) ∗ (D(a)φ+ [ψ, χ])

+ [ψ , ∗(ψ +D(a)χ)])) , (36)

where * is the Hodge duality symbol. In the second term of
the first line, we have used the supercurvature component
Ψ given in (23) instead of ψ for the sake of supergauge
invariance. In the WZ gauge, χ = 0, we have

Sinv = Tr
∫ ( 0b0D−2 F (a) + −1η0

0 D(a) ∗ ψ

+ (−1)D−1 −1b̄0D−2 D(a)ψ (37)

− −2φ̄0
0 D(a) ∗D(a)φ+ [ψ ∗ ψ]

)
.

Beyond the zero mode of the connection superfield A due
to super-Yang–Mills invariance (17), there still remain 0-
modes for the (D− 2)-form superfield −1B0

D−2, due to an
invariance under local transformations of the form

δ −1B0
D−2 = D(A) −1Σ0

D−3 . (38)

Before describing our way of fixing these zero modes, let
us briefly recall of the scheme introduced in [4].

4.1.2 The Blau–Thompson gauge fixing

The fixing of the zero modes of −1B0
D−2 by the au-

thors of [3,4,11] is based on the Batalin–Vilkovisky proce-
dure [12], adapted to the case where gauge invariance is the

shift symmetry, with a corresponding system of ghosts for
ghosts, antighosts and Lagrange multipliers. The result is
rather cumbersome and redundant, but the authors of [4]
succeeded to construct a reduced procedure with a mini-
mum number of fields. The reduced procedure amounts to
introducing a set of superfields, which we shall denote by

0Ψ
0
D−3 ,

−1Ψ
0
D−4 ,

0Ψ
0
D−5 , . . . , −kΨ

0
0 ,

with

k =
1
2

(
1 + (−1)D

)
, (39)

and adding to the action (36) the terms

SBT = Tr
∫
d1θ

(
0Ψ

0
D−3 D(A) ∗ −1B0

D−2

+ −1Ψ
0
D−4 D(A) ∗ 0Ψ

0
D−3

+ 0Ψ
0
D−5 D(A) ∗ −1Ψ

0
D−4

+ . . .+ −kΨ
0
0 D(A) ∗ k−1Ψ

0
1

)
, (40)

which by construction is a Q-variation. If supplemented by
a gauge fixing action for the Yang–Mills supergauge invari-
ance, the fixing of the zero modes is complete, propagators
are well defined and the quantum theory may be calculated.
However, the latter is not defined unambiguously. This can
be seen, at the perturbative level, from the possible occur-
rence of gauge invariant and supersymmetric counterterms
different from the terms already present in the action. For
instance, in D = 4 dimensions, such possible counterterms
are given by superspace integrals of traces of expressions
such as

0Ψ
0
1D(A) −1B0

2 ,
0Ψ

0
1

−2Φ
0
0 ∗ Ψ , (41)

−1Ψ
0
1

−2Φ
0
0 ∗ Φ , −1B0

2
(
∂θ

−1B0
2 + [E, −1B0

2 ]
)

etc.

This fact may jeopardize the stability of the theory under
radiative corrections.

Let us remind the reader that there is an alternative
way [2], which may be used in the instanton configuration
case, in D = 4 dimensions. It consists in adding to the
action (37), instead of the terms (40), a term quadratic in
the Lagrange multiplier −1B0

D−2:

1
2

Tr
∫
d1θ

( −1B0
2 ∗ (

∂θ
−1B0

2 + [E, −1B0
2 ]

))
, (42)

equal to

1
2

Tr
∫ ( 0b02 ∗ 0b02 + −1b̄02[

−1b̄02, φ]
)
, (43)

in the WZ gauge, and substituting the now auxiliary field
0b02 by its equation of motion 0b02 = P−F (a), where P− is
the anti-selfduality projector defined in (77). This leads to
the term

SH =
1
2

Tr
∫

(P−F (a))2 ,
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as pointed out in [2], thus leading to Witten’s original ac-
tion5. This alternative way is analogous to the way leading
from a gauge fixing of the Landau type to one of the Feyn-
man type in the usual gauge theories. We note that the
action Sinv + SH represents a complete gauge fixing, too,
since the BF type gauge invariance is explicitly broken.
Moreover, it is stable under the radiative corrections, con-
trary to the action Sinv + SBT. However, this alternative
procedure appears to be unsuitable for generalization to
higher dimensions and higher supersymmetry.

On the other hand, the reduced Blau–Thompson pro-
cedure may be easily generalized to higher dimensions and
higher NT shift supersymmetry: this has been done in [4]
forD = 3 and 4,NT = 1 and 2. However, the same problem
of unstability will persist.

4.1.3 The super-BF gauge fixing

Our proposal is to treat the theory as a supersymmetric
theory with supergauge invariance, and to eliminate the
zero modes of the superfield −1B0

D−2 by explicitly us-
ing the supergauge invariance of the type encountered in
topological BF theories and fixing it accordingly to the
Batalin–Vilkovisky (BV) prescription [12], as in BF the-
ories. Implementing this new gauge invariance within the
BRST algebra, we first introduce a ghost −1B1

D−3 as well
as a series of ghosts for ghost −1Bg

D−2−g, g = 2, . . . , D−2,
and the BRST transformation rules

S −1B0
D−2 = −[C, −1B0

D−2] −D(A) −1B0
D−3 ,

S −1Bg
D−2−g = −[C, −1Bg

D−2−g] −D(A) −1Bg+1
D−3−g

(with g = 1, . . . , D − 3),

S −1BD−2
0 = −[C, −1BD−2

0 ] , (44)

where we have included the super-Yang–Mills transforma-
tions with superghost C. We note that, if the space-time
dimension D is greater or equal to four, these transfor-
mations hold only on-shell, namely modulo terms linear in
the curvature F (A), the latter being an equation of motion
as a consequence of the action (36). Indeed, S2 = 0 when
applied to all the fields, except

S2 −1Bg
D−2−g = −

[
F (A), −1Bg+2

D−4−g

]
(45)

(g = 1, . . . , D − 3 ; D ≥ 4) .

The transformations as written in (44) hold in the generic
case describing the gauge field configurations of null cur-
vature: F (a) = 0. If we are interested in the selfdual con-
figurations in four-dimensional space-time, P−F (a) = 0,
the Lagrange multiplier superfield −1B0

2 has to be chosen
as an anti-selfdual 2-form:

P+
−1B0

2 = 0 , (46)
5 This point is discussed in [13] together with an argument

indicating the equivalence of both versions.

and the BRST transformations (44) must be redefined ac-
cordingly:

S −1B0
2 = −[C, −1B0

4 ] − P−
(
D(A) −1B0

1
)
,

S −1B1
1 = −[C, −1B1

1 ] −D(A) −1B2
0 ,

S −1B2
0 = −[C, −1B2

0 ] . (47)

One readily verifies that on-shell nilpotency still holds,
F (A) in (45) being replaced by P−F (A), which is now the
relevant equation of motion.

The fixing of the gauge invariance (38) is completed
through the addition of antighost and Lagrange multiplier
superfields sC

g−1
p and sΠg

p . The ghosts B and antighosts
BC form together a Batalin–Vilkovisky triangle, whose
upper summit is the superfield −1B0

D−2 and the bottom
line is made of 0-forms:

−1B0
D−2

0C
−1
D−3

−1B1
D−3

−1C
0
D−4

0C
−2
D−4

−1B2
D−4

0C
−1
D−5

−1C
1
D−5

0C
−3
D−5

−1B3
D−5

. . . . . . . . . . . . . . .

The Lagrange multipliers form a smaller triangle corre-
sponding to the antighost subtriangle:

0Π0
D−3

−1Π1
D−4

0Π−1
D−4

−0Π0
D−5

−1Π2
D−5

0Π−2
D−5

. . . . . . . . . . . .

The set of BRST transformations given by (17) for the
connection superfields A and E, by (44) for −1B0

D−2 and
its ghosts, is completed by

S sC
g−1
p = sΠg

p , S −1Πg
p = 0 , (48)

for the antighost and Lagrange multipliers, and finally by

S −2Φ
0
0 = −[C, −2Φ

0
0] , (49)

the nilpotency property being preserved. Introducing still
the antighost and Lagrange multiplier superfields C and
Π for fixing super-Yang–Mills gauge invariance, we are
ready to write down a complete action. Since the “BF
gauge symmetry” algebra is closed only on-shell, one must
use the complete Batalin–Vilkovisky setting, including the
introduction of the antifields, and demand that the action
solves the master equation, thereby obtaining an action
involving terms quadratic in the ghosts. This has been
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done quite generally for the usual BF models [3, 6] and
will not be repeated here. We shall only indicate the part,
written as a superspace integral, of the action linear in the
ghost fields, which may be obtained adding to the invariant
action (36) a BRST variation:

S(linear part in the ghosts)

= Sinv − S Tr
∫
d1θ

(
C d ∗A+ 0C

−1
D−3 d ∗−1 B0

D−2

+ 0C
−2
D−4 d ∗−1 B1

D−3 + −1C
0
D−4 d ∗0 C

−1
D−3 + . . .

)

= Tr
∫
d1θ

(
−1B0

D−2 F (A) + −2Φ
0
0 D(A) ∗ Ψ

+ Π d ∗A− C d ∗ SA+ 0Π0
D−3 d ∗ −1B0

D−2

+ 0Π−1
D−4 d ∗ −1B1

D−3 + −1Π1
D−4 d ∗ 0C

−1
D−3

− 0C
−1
D−3 d ∗ S −1B0

D−2 − 0C
−2
D−4 d ∗ S −1B1

D−3

− −1C
0
D−4 d ∗ S 0C

−1
D−3 + . . .

)
. (50)

In fact, the dependence in the Lagrange multipliers is exact
and completely fixed if one imposes, as it may be done in
usual gauge theories [14], the Landau type “gauge condi-
tions”

δS

δΠ
= d ∗A ,

δS

δ 0Π0
D−3

= d ∗ −1B0
D−2 ,

δS

δ 0Π−1
D−4

= d ∗ −1B1
D−3 ,

δS

δ −1Π1
D−4

= d ∗ 0C
−1
D−3 , . . . , (51)

which, being linear, are not subject to renormalization.
For the sake of completeness, let us write the expansions

of the various superfields present in this action:

A = a+ θψ , E = χ+ θφ ,

−1Bg
D−2−g = −1b̄gD−2−g + θ 0bgD−2−g ,

−2Φ
0
0 = −2φ̄0

0 + θ −1η0
0 , Π = π′ + θπ ,

sΠg
p = s(π′)g

p + θ s+1πg
p ,

sC
g

p = s(c̄′)g
p + θ s+1c̄gp . (52)

Case D = 3

The BRST operator S is strictly nilpotent, and the com-
plete action reads

S = Tr
∫
d1θ

(
−1B0

1 F (A) + −2Φ
0
0 D(A) ∗ Ψ

+ Π d ∗A− C d ∗ SA+ 0Π0
0 d ∗ −1B0

1

− 0C
−1
0 d ∗ S −1B0

1

)
, (53)

which, in component fields, yields (see (23) for the θ ex-
pansion of Ψ)

S = Tr
∫ ( 0b01 F (a) + −1η0

0 D(a) ∗ (ψ +D(a)χ)

− −1b̄01 D(a)ψ

+ −2φ̄0
0 ( D(a) ∗ (D(a)φ− [ψ, χ])

+ [ψ, ∗(ψ +D(a)χ)])

+ π d ∗ a+ π′ d ∗ ψ + 1π0
0 d ∗ −1b̄01

− 0(π′)00 d ∗ 0b01 − c̄ d ∗ Sa− c̄′ d ∗ Sψ (54)

− 1c̄−1
0 d ∗ S −1b̄01 + 0(c̄′)−1

0 d ∗ S 0b01
)
.

In the WZ gauge χ = 0, this gives

S = Tr
∫ ( 0b01 F (a) + −1η0

0 D(a) ∗ ψ

− −1b̄01 D(a)ψ + −2φ̄0
0( D(a) ∗D(a)φ+ [ψ, ∗ψ])

+ π d ∗ a+ π′ d ∗ ψ
+ 1π0

0 d ∗ −1b̄01 − 0(π′)00 d ∗ 0b01

− c̄ d ∗ Sa− c̄′ d ∗ Sψ − 1c̄−1
0 d ∗ S −1b̄01

+ 0(c̄′)−1
0 d ∗ S 0b01

)
. (55)

One may observe that the latter action contains the term
π′d ∗ ψ which, compared with −1η0

0 D(a) ∗ ψ, shows that
the fields π′ and −1η0

0 are redundant and the quadratic
part of the action singular. This redundancy is an artifact
of having written the action in the WZ gauge, where χ = 0.
In the supersymmetric gauge yielding the action (54), the
field −1η0

0 also couples to χ, and there is therefore no
redundancy. When restricting to the WZ gauge, in order
to get rid of this redundancy, one has to put π′ = 0, too.

Case D = 4

Let us consider the case of a selfdual curvature, defined by
the anti-selfduality condition (46) on the B field and the
BRST transformations (47). The action is

S = Tr
∫
d1θ

(
−1B0

2 F (A) + −2Φ
0
0 D(A) ∗ Ψ

+ Π d ∗A+ 0Π0
1 d ∗ −1B0

2 − −1C
0
0 d ∗ 0Π0

1

)

+Sghost , (56)

where Sghost is the part of the action depending on the fields
of ghost number �= 0, which we shall not write explicitly.
In component fields, in the WZ gauge χ = 0 and6 π′ = 0,
this reads

S = Tr
∫ ( 0b02 F (a) + −1η0

0 D(a) ∗ ψ + −1b̄02 D(a)ψ

6 See the remark at the end of the preceding example.
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+ −2φ̄0
0 ( D(a) ∗D(a)φ+ [ψ ∗ ψ])

+ π d ∗ a+ 1π0
1 d ∗ −1b̄02 + 0(π′)01 d ∗ 0b02

− 0c̄00 d ∗ 0(π′)01 − −1(c̄′)00 d ∗ 1π0
1
)

+ Sghost . (57)

We can see from the actions (53) and (56) given in the
two examples above that the non-ghost part of the action
constructed using the “super-BF gauge fixing” procedure
coincides, in the WZ gauge, with the action (36) and (40)
given by the Blau–Thompson procedure. In D = 4 dimen-
sions, for instance, the Blau–Thompson action is given
by (5) and the super-BF -like action by (57). They are
almost identical, up to changes in the notation:

1λ1 → 1π0
1 ,

0ψ̄1 → 0(π′)01 ,
0λ0 → 0c̄00 ,

−1ψ̄0 → −1(c̄′)00 ,

and up to the presence of simple derivatives in the latter
action instead of covariant derivatives in the former one.
In the latter action the supermultiplets7 { 0(π′)01,

1π0
1}

and { −1(c̄′)00,
0c̄00} appear naturally as Lagrange multipli-

ers and antighosts within the Batalin–Vilkovisky scheme,
with couplings fixed uniquely by the gauge conditions (51).
Hence, due to this and to the gauge invariance of the BF
type defined by (38), the action (56) is uniquely defined, up
to an irrelevant renormalization of the superfields −1B0

2

and −2Φ
0
0, thus guaranteeing an unambiguous quantum

extension of the theory. In contrast, { 0(π′)01,
1π0

1} and
{ −1(c̄′)00,

0c̄00} appear in the Blau–Thompson approach
as independent supermultiplets introduced together with
their couplings in an ad hoc way, with the consequence
that the action (4.7) of [4] is not the most general super-
symmetric and gauge invariant one. Indeed, forgetting the
BF type invariance and the character of Lagrange multi-
plier and antighost of 0Π0

1 and −1C
0
0, one would have

to consider possible (counter)terms involving these fields,
such as those given by (41) – in the notation of Sect. 4.1.2 –
which are gauge invariant, supersymmetric and of the same
power counting dimension four as the action. Of course,
these considerations apply as well to the general case of
an arbitrary dimension and also to the models with an
arbitrary number of supersymmetry generators considered
in Sect. 4.2. Let us also repeat that the action as originally
given by Witten [1] in the four-dimensional case would
correspond to adding to the action (57) the term

1
2

Tr
∫
d1θ

( −1B0
2 ∂θ

−1B0
2
)

=
1
2

Tr
∫ ( 0b02

)2
, (58)

and substituting the now auxiliary field 0b02 by its equation
of motion 0b02 = −P−F (a), whereP− is the anti-selfduality
projector defined in (77), thus leading to the term

1
2

Tr
∫

(P−F (a))2 .

7 Denoted in (4.6) and (4.7) of [4] by {V, ψ̄} and {η̄, u},
respectively.

This would amount to go from a “gauge fixing” of the
Landau type for the local shift symmetry, to one of the
Feynman type. However, such a term (58) is not allowed
in our scheme since it is not invariant under the BF type
gauge transformation, as we have discussed above.

4.2 Action for any NT

The generalization for any number NT of supersymme-
try generators is straightforward. The θ-expansions of the
superfield components A and EI of the superconnection
Â (13) and of the superghost C are given in (14) and (15).
Their BRST transformations are given in (16) and (17).
The Lagrange multiplier superfields, associated to the zero
curvature (or selfduality) condition and to the fixing of the
zero mode of ψI , read −NTB0

D−2 and −NT−1(Φ
I
)00, re-

spectively. The supersymmetric and supergauge invariant
action is given by

Sinv = Tr
∫
dNT θ

( −NTB0
D−2 F (A)

+ −NT−1(Φ
I
)00 D(A) ∗ ΨI

)
, (59)

with the supercurvature components F (A) and ΨI defined
by (19). We shall not spell out this expression, nor the fol-
lowing ones, in components.The ghosts and ghosts for ghost
of −NTB0

D−2 are shown together with their antighosts in
the BV triangle

−NTB0
D−2

0C
−1
D−3

−NTB1
D−3

−NTC
0
D−4

0C
−2
D−4

−NTB2
D−4

. . . . . . . . . . . .

and the corresponding Lagrange multipliers in the triangle

0Π0
D−3

−NTΠ1
D−4

0Π−1
D−4

. . . . . . . . .

The BRST transformations (48) and (49) hold, and the
total action reads, as far as its linear part in the ghost fields
is concerned,

S(linear part in the ghosts)

= Tr
∫
dNT θ

( −NTB0
D−2 F (A)

+ −NT−1(Φ
I
)00 D(A) ∗ ΨI +Π d ∗A− C d ∗ SA

+ 0Π0
D−3 d ∗ −NTB0

D−2 + 0Π−1
D−4 d ∗ −NTB1

D−3
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+ −NTΠ1
D−4 d ∗ 0C

−1
D−3 − 0C

−1
D−3 d ∗ S −NTB0

D−2

− 0C
−2
D−4 d ∗ S −NTB1

D−3 −−NT C
0
D−4 d ∗ S 0C

−1
D−3

+ . . .) , (60)

with F (A) and ΨI given by (27). The couplings of the
Lagrange multipliers are still defined by the gauge condi-
tions (51), with the obvious SUSY number substitution −1
→ −NT in due place.

Case NT = 2, D = 3

The complete action is

S = Tr
∫
d2θ

(
−2B0

1 F (A) + −3(Φ
I
)00 D(A) ∗ ΨI

+ Π d ∗A− C d ∗ SA+ 0Π0
0 d ∗ −2B0

1

− 0C
−1
0 d ∗ S −2B0

1

)
. (61)

We can write this action in components, in the WZ gauge
χI = 0, φIJ − φJI = 0, using the θ-expansions defined
in (24) and by

−1Bg
D−2−g = b̄(x) + θIbI(x) +

1
2
θ2b(x) ,

−2(Φ
I
)00 = φ̄I + θJ φ̄I

J +
1
2
θ2φ̄I

F ,

Π = π + θIπI +
1
2
θ2πF ,

0Π0
0 = π′ + θIπ′

I +
1
2
θ2π′

F . (62)

The result is, restricted to the quadratic terms,

Squadr = − Tr
∫ (

bf(a) − εIJbIdψJ + b̄dα

+ φ̄I
F d ∗ ψI + εJK φ̄I

Jd ∗ (εIJα+ dφIJ) + φ̄Id ∗ dηI

+ πF d ∗ a+ εIJπId ∗ ψJ + πd ∗ α+ π′
F d ∗ b̄

+ εIJπ′
Id ∗ bJ + π′d ∗ b) . (63)

As in the NT = 1 case, one has redundancy in some of the
fields, which must be eliminated by putting π = πI = 0.
One can see that this action – like in the examples 4.1.3
and 4.1.3 – also corresponds to an action written by Blau
and Thompson ((4.5) of [4]).

5 Examples of observables

It has been shown in [7] that all the observables forNT = 1,
defined as BRST cohomology classes of supersymmetric
field polynomials, are given from the Chern classes associ-
ated to the superconnection Â in (13), and that the result is
equivalent to the result ofWitten given in Sect. 2.2. We shall

give here the generalization for any value of NT, however
without proving that this still gives the complete set of ob-
servables [15]. The observables are completely determined
from the general solution of the superdescent equations

SΩ̂D + d̂Ω̂1
D−1 = 0 , SΩ̂1

D−1 + d̂Ω̂2
D−2 = 0 ,

. . . , SΩ̂D
0 = 0 , (64)

where Ω̂D(x, θ) are superforms of ghost number 0 and su-
perform degree D which are non-trivial elements of the
cohomology H(S|d̂) of S modulo d̂ in the space of the su-
performs,

SΩ̂ = 0 (modulo d̂) , but Ω̂ �= SΦ̂ (modulo d̂) .

Expanding QNTΩ̂D = (∂θ)NTΩ̂D according to the space-
time form degree p:

QNTΩ̂D =
D∑

p=0

wp; I1...ID−p
dθI1 . . . dθID−p , (65)

one identifies the space-time forms wp as the desired solu-
tions. Indeed,

Swp(x) = 0 (modulo d) (n ≥ 1) , Qw0(x) = 0 ,

which follows from applying the operator QNT to the first
of the superdescent equations (64), and using the iden-
tities QNT d̂ = QNT d = (−1)NT dQNT , which are direct
consequences of the definitions. The general result for (64)
is [7]

Ω̂D = θCS
r1

(Â)fr2(F̂ ) . . . frL
(F̂ ) ,

with D = 2
L∑

i=1

mri − 1 , L ≥ 1 , (66)

where fr(F̂ ) is the supercurvature invariant of degree mr

in F̂ corresponding to the gauge group Casimir operator
of degree mr, and θCS

r (Â) is the associated super-Chern–
Simons form:

d̂θCS
r (Â) = fr(F̂ ) . (67)

We note that the superform degree of the solution (66)
is odd.

Maximum degree D = 3

The superdescent equations read

SΩ̂3 + d̂Ω̂1
2 = 0 , SΩ̂1

2 + d̂Ω̂2
1 = 0 ,

SΩ̂2
1 + d̂Ω̂3

0 = 0 , SΩ̂3
0 = 0 .

The unique non-trivial solution is

Ω̂3 = Tr
(
Âd̂Â+

2
3
Â3

)
, Ω̂1

2 = Tr(Âd̂C) ,
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Ω̂2
1 = Tr(Cd̂C) , Ω̂3

0 = −1
3

TrC3 .

Note that Ω̂3 is the Chern–Simons superform associated
to the quadratic Casimir operator of the gauge group. Fol-
lowing (64) we get, for NT = 1,

w0 = Tr(φ2 + 2φχ2) ,

w1 = 2 Tr(ψφ+ ψχ2 + φD(a)χ) ,

w2 = Tr(ψ2 + 2φF (a) + 2ψD(a)aχ) ,

w3 = 2 Tr(ψF (a)) . (68)

The observables are the integrals of these forms (and of
TrF (a)2) on closed submanifolds of appropriate dimension.
In the Wess–Zumino gauge, χ = 0,

w0 = Tr(φ2) , w1 = 2 Tr(ψφ) ,

w2 = Tr(2φF (a) + ψ2) , w3 = 2 Tr(ψF (a)),

which corresponds toWitten’s result up to total derivatives.
For NT = 2 we obtain (in the WZ gauge χI = 0,

φ[IJ] = 0)

w0 = 2 Tr η(IφJK) ,

w1 = Tr(2αφ(IJ) + 2ψ(IηJ) + εKLφ(I|KD(a)φL|J)) ,

w2 = 2 Tr(αψI + F (a)ηI + εJKφIJD(a)ψK) ,

w3 = Tr(2αF (a) + εIJψID(a)ψJ).

6 Absence of radiative corrections

The Feynman rules in the general case are deduced from
the action (60). It is useful to work directly in superspace.
The non-zero superpropagators are

〈
A(1), −NTB0

D−2(2)
〉
,

〈
A(1), Π(2)

〉
,

〈
C(1), C(2)

〉
,

〈
EI(1), −NT−1(Φ

I
)00(2)

〉
,〈

EI(1), Π(2)
〉
,〈 −NTBg

D−g−2(1), 0Π−g
D−g−3(2)

〉
,

〈 −NTBg
D−g−2(1), 0C

−g

D−g−2(2)
〉

(g ≥ 0) ,
〈 0C

−g

D−g−2(1), −NTΠg
D−g−3(2)

〉
(g ≥ 1) ,

〈 −NTC
g

D−g−4(1), 0Π−g
D−g−5(2)

〉
,

〈 −NTC
g

D−g−4(1), 0Π−g
D−g−3(2)

〉
(g ≥ 0) ,

〈 0C
−g

D−g−4(1), −NTΠg
D−g−5(2)

〉
,

〈 0C
−g

D−g−4(1), −NTΠg
D−g−3(2)

〉
(g ≥ 0) , (69)

et cetera,whereweareusing thenotationϕ(n) forϕ(xn, θn).
With one irrelevant exception shown hereafter, all these

propagators have as a factor a θ-space δ-function (θ1 −
θ2)NT . For instance, the first one reads〈

Aµ(1), −NTB0
ν1...νD−2

(2)
〉

∼ ∆−1 εµν1...νD−2ρ ∂
ρδ(1, 2) , (70)

up to some numerical factor, where ∆−1 is the inverse of
the Laplace operator ∆ = ∗d ∗ d+ d ∗ d∗, and

δ(1, 2) = δD(x1 − x2)
(−1)NT+1

NT!
(θ1 − θ2)NT

is the (D,NT)-superspace Dirac distribution. The excep-
tion is the propagator

〈EI(1), Π(2)〉 ∼ ∆−1 ∂

∂θI
1
δ(1, 2) , (71)

which is of degreeNT−1 in θ1−θ2. However, the latter does
not contribute to any 1-particule irreducible (1PI) graph
since the Lagrange multiplier superfield Π has no interac-
tion in virtue of the gauge conditions (51). Now, repeating a
well-known argument of superspace diagrammatics [10,16],
we observe that, since all contributing propagators have a
factor (θm−θn)NT , the integrant of a non-trivial 1PI graph
with N vertices will be homogeneous of degree N × NT
in the differences θI

m − θI
n. On the other hand, having

N ×NT independent Grassmann coordinates, we can only
form (N − 1)×NT independent differences. Hence, due to
the anticommutativity of the θ, the integrant will vanish.
We thus conclude to the complete absence of radiative cor-
rections.

7 Conclusion

We have developed a general scheme, based on the su-
perspace formalism, which allows for a systematic con-
struction of topological Yang–Mills theories for arbitrary
numbers of shift supersymmetry generators and space-time
dimensions. The main advantage of this scheme, beyond
its systematic character, is that it leads to an unambigu-
ous determination of the respective actions, thanks to the
introduction of a BF theory type supergauge invariance,
which has been fixed according to the Batalin–Vilkovisky
prescriptions. Moreover, the ultraviolet finiteness – in fact
the absence of radiative corrections – follows, in the super-
symmetric gauge fixing we have chosen, directly from the
superspace Feynman rules.
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José Helayël Neto, Matthieu Lefrançois and José Alexandre
Nogueira for many useful discussions.

Appendices. Notations and conventions

A Differencial calculus

Here, “space-time” is an arbitray smooth manifold of di-
mensionD, equipped with a Riemannian background met-
ric (gµν), of determinant g > 0. Space-time objects are
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differential forms such as a = aµdx
µ, etc. We shall call an

object even or bosonic (respectively, odd or fermionic) if it
obeys commutation (respectively, anticommutation) rela-
tions.Thebracket [·, ·] in general denotes the gradedbracket

[X,Y ] = XY + Y X if both X and Y are odd,

[X,Y ] = XY − Y X otherwise. (72)

The fields (forms, superfields, etc.) appearing in this paper
are all taken in the Lie algebra of the gauge groupG, which
we assume to be compact. A field ϕ is then a matrix ϕaτa,
where the generators τa obey the Lie algebra commutation
relations and trace property

[τa, τb] = fab
cτc , Tr τaτb = 2δab . (73)

The Hodge dual of a p-form ω is the (D − p)-form ∗ω
defined by [17]

∗ω =
1

(D − p)!
ω̃µ1...µD−p

dxµ1 . . . dxµd−p ,

where

ω̃µ1...µD−p
=

1
p!

1√
g
εµ1...µD

ωµD−p+1...µD . (74)

Here and elsewhere in the text, the wedge product symbol
has been omitted. Moreover, the background metric (gµν),
as well as the totally antisymmetric tensor of Levi-Civita,

εµ1...µD
= gµ1ν1 . . . gµDνD

εν1...νD ,

ε1...D = 1 , ε1...D = g . (75)

The following formulas are quite useful [17]:

∗ ∗ ωp = (−1)p(D−p) ωp , ωp ∗ φp = φp ∗ ωp . (76)

Since the Hodge star operator maps a form of degree p to
a form of total degreeD−p, it represents an even operator
if the space-time dimension D is even and an odd operator
otherwise. For D = 4, a selfdual or anti-selfdual 2-form
ω2 is defined by the condition ∗ω2 = ±ω2. Projectors on
selfdual or anti-selfdual 2-forms are given by

P± =
1
2
(1 ± ∗) . (77)

B NT- supersymmetry and superspace

(D,NT)-superspace bosonic coordinates are denoted byxµ,
µ = 0, . . . , D − 1, the fermionic (Grassmann, or anticom-
muting) coordinates being denoted by θI , I − 1, . . . , NT.
The NT supersymmetry generators QI are represented on
superfields F (x, θ) by

QIF = ∂IF ≡ ∂

∂θI
F ,

where, by definition, ∂Kθ
J = δJ

K . Further conventions and
properties of the θ-coordinates are the following:

θNT = εI1...INT
θI1 . . . θINT = NT! θ1 . . . θNT ,

(∂θ)NT = εI1...INT∂I1 . . . ∂INT
= NT! ∂1 . . . ∂NT ,

(∂θ)NTθNT = −(NT!)2 ,

where εI1...INT is the completely antisymmetric tensor of
rank NT, with the conventions

ε1...NT = 1 , εI1...INT
= (−1)NT+1 εI1...INT .

One may define the conserved supersymmetry number – the
SUSY number – attributing the value 1 to the generators
QI , hence −1 to the θ-coordinates. The SUSY number of
each field component is then deduced from the SUSY num-
ber given to each superfield. The integration of a superfield
form Ωp(x, θ) in superspace is defined by the integrals

∫
dNT θ Ωp(x, θ) =

∫
Mp

∫
dNT θ Ωp(x, θ) ,

where the x-space integral is done on some p-dimensional
(sub)manifold Mp, and the θ-space integral is the Berezin
integral defined by

∫
dNT θ . . . = − 1

(NT!)2
(∂θ)NT . . . ,

such that ∫
dNT θ θNT = 1 .

In the specal case ofNT = 2, the antisymmetric tensors εIJ

and εIJ may be used for raising and lowering the indices:

θI = εIJθ
J , θI = εIJθJ ,

εIJ = −εIJ , ε12 = 1 , εIJεJK = δI
K ,

and one has the useful formulas

θ2 = θIθI = −θIθ
I ,

θIθJ = −1
2
εIJθ2 , θIθJ =

1
2
εIJθ

2 .

NT = 1 and NT = 2 superfields have the conventional ex-
pansions

Φ(x, θ) = φ(x) + θφ′(x) (NT = 1) ,

Φ(x, θ) = φ(x) + θIφI(x) +
1
2
θ2φF (NT = 2) .
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